Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Consider the RV X with uniform distribution over [0,1]:

Suppose h(x) = x3/2:

Image RemovedImage Added

Discrete RVs

Consider the RV X with binomial distribution and parameters N = 2 and p = 0.2. Support of X is {x0 = 0, x1 = 1, x2 = 2}.

...

If no ambiguity results, subscripts or superscripts for the PDF, PMF, or CDF are often omitted. For example:

Cross-Correlation

Continuous RVs

The cross-correlation of two jointly absolutely continuous RVs X and Y is given by:

Image Added

Discrete RVs

The cross-correlation of two jointly discrete RVs X and Y is given by:

Image Added

Covariance

The covariance of two RVs X and Y is given by:

Image Added

If the Cov(X,Y) = 0, X and Y are uncorrelated.

Independence

Continuous RVs

Two jointly absolutely continuous RVs X and Y are independent if:

Image Added

Or equivalently:

Image Added

Discrete RVs

Two jointly discrete RVs X and Y are independent if:

Image Added

Or equivalently:

Image Added

Conditional Probability

Continuous RVs

Conditional PDF

If X and Y are jointly absolutely continuous RVs, the conditional PDF of X given Y is defined as:

...

For y < 0 or y > 1fX|Y(x|y) = 0 and FX|Y(x|y) is not defined.

Discrete RVs

Conditional PMF

Suppose X and Y are jointly discrete RVs with support {(xi,yj)}, i and j integers. The conditional PMF of X given Y is defined as:

Image Added

If pjY != 0:

Image Added

So, pi|jX|Y, i = ..., -1, 0, 1, ... is a valid PMF for the RV X given Y = yj, with support {..., x-1, x0, x1, ...}.

Conditional CDF

If X and Y are jointly discrete RVs and pjY != 0, the conditional CDF of X given Y = yj is defined as:

Image Added

If X and Y are jointly discrete RVs and Pr(Y in the set B) != 0, the conditional CDF of X given Y in the set B is defined as:

Image Added